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Abstract. We show that the asynchronous push-pull protocol spreads
rumors in preferential attachment graphs (as defined by Barabási and
Albert) in time O(

√
logn) to all but a lower order fraction of the nodes

with high probability. This is significantly faster than what synchronized
protocols can achieve; an obvious lower bound for these is the average
distance, which is known to be Θ(logn/ log log n).

1 Introduction

Online social networks like Facebook and Twitter are changing the way
people communicate, organize and act collectively. They are starting to
take the lead over traditional news media in their ability to spread news
at a remarkable speed. One striking example was the first picture of US
Airways Flight 1549’s crash landing on the Hudson River, which became
known to a broad audience through Twitter even before TV channels
started to report on the accident.

The theoretical model most widely used for social networks is the
so-called preferential attachment (PA) model, which was introduced in
a seminal paper by Barabási and Albert [1]. It builds on the paradigm
that new vertices attach to already present vertices with a probability
proportional to their degree. Several papersprove that this model indeed
enjoys many properties observed in social networks and many other real
world networks, e.g., a power law distribution of the vertex degrees, a
small diameter and a small average degree [2, 4]. The precise definition
of the PA model can be found in Section 2. Note that later extended
definitions for PA graphs were given (with the preference not anymore
proportional to the degree); in this paper, we shall always refer to the
original one.

In this paper, we revisit the rumor spreading problem in PA graphs,
i.e., the spread of one piece of information in a graph. The classical rumor
spreading process is modeled on a discrete time line. A simple protocol
assumes that in each time step (or round) every node that knows the
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rumor forwards it to a randomly chosen neighbor. This is known as the
push strategy. For many network topologies, this strategy is a very efficient
way to spread a rumor. Let n denote the number of vertices of a graph.
Then the push model with high probability (i.e., with probability 1−o(1))
sends the rumor to all vertices in time Θ(log n), if the graph is a complete
graph [19], a hypercube [15], an Erdős-Rényi random graph Gn,p with
p ≥ (1 + ε) log(n)/n [15], or a random regular graph [17]. In contrast
to this, Chierichetti, Lattanzi, and Panconesi [7] showed that the push
model with non-vanishing probability needs Ω(nα) rounds on PA graphs
for some α > 0.

Opposite to the push strategy is the pull strategy : each vertex in each
round contacts a random neighbor and learns the rumor if its contact
knows the rumor. There is a symmetry between the two models [6, 10],
hence these results also hold for the pull model.

Karp, Schindelhauer, Shenker, and Vöcking [22] pointed out that for
complete graphs, the pull strategy is inferior to the push strategy until
roughly n/2 vertices are informed, and then the pull strategy becomes
more effective. This motivates to combine both approaches. In this so-
called push-pull strategy each vertex contacts another vertex chosen uni-
formly at random among its neighbors. It pushes the rumor in case it has
the rumor, and pulls the rumor in case the neighbor has the rumor. For
complete graphs and many Erdős-Rényi random graphs, this protocol also
needs Θ(log n) rounds, though with better implicit constants [9, 13, 22].
Its main advantage here is that it allows to define protolls using fewer
messages. Chierichetti et al. [6] relate the broadcast time of the push-
pull strategy to the conductance of graphs; graphs with conductance Φ
have a broadcast time of O

(
log2(Φ−1)Φ−1 log n

)
with high probability.

Giakkoupis [20] recently improved this bound to O(Φ−1 log n) which is
tight.

For preferential attachment graphs, however, the push-pull strategy
is much better than push or pull alone. Chierichetti et al. [7] showed
that with this strategy, O(log2 n) rounds suffice with high probability.
Recently, we showed that in fact the push-pull strategy succeeds to inform
all nodes in Θ(log n) rounds [11]. Surprisingly, if the push-pull strategy is
slightly modified to prevent that a node contacts the same neighbor twice
in a row, then with high probability already Θ(log n/ log log n) rounds
suffice [11], which is the diameter of the PA graph.

All these results assume a synchronized model, in which all nodes
take action simultaneously at discrete time steps. In many applications
and certainly in real-world social networks, this assumption is not very
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plausible. One can also argue (see, e.g., [5]) that time-synchronization
contradicts the idea of a self-organized broadcasting protocol. Boyd et al.
[5] therefore proposed an asynchronous time model with a continuous
time line. Each node has its own clock that ticks at the times of a rate 1
Poisson process independent from the clocks of other nodes. The protocol
now specifies for every node what to do when its own clock ticks.

The rumor spreading problem in the asynchronous time model has so
far received less attention. The push-pull protocol in this model, however,
turns out to be closely related to Richardson’s model for the spread of a
disease and to first-passage percolation. In this sense, for the hypercube,
Fill and Pemantle [16] and Bollobás and Thomason [3] showed that the
asynchronous push-pull protocol spreads a rumor to all nodes in time
Θ(log n). Similarly, for the complete graph, Janson [21] showed a bound
of Θ(log n). Note that these bounds match the same asymptotics as in
the synchronized case. We also suspect that the same bounds hold in case
all but o(n) nodes are to be informed.

Fountoulakis, Panagiotou, and Sauerwald [18] have recently studied
the push-pull protocol in the asynchronous time model for random graphs
in the Ching-Lu model [8] with a given expected degree distribution that
follows a power law with exponent in (2, 3). For these graphs, they show
a constant runtime to inform n− o(n) nodes. Note that these graphs are
quite different from our PA graphs, e.g., their average diameter is known
to be Θ(log log n) (see [8]), whereas for PA graphs the average diameter
is also Θ(log n/ log log n) (see [12]).

Our results: We study the push-pull protocol in the asynchronous
time model on PA graphs and prove that it spreads a rumor in time
O(
√

log n) to n− o(n) nodes in the PA model with high probability. The
protocol thus beats the average distance of Θ(log n/ log log n), which is a
natural lower bound for the synchronized protocol achieving this aim. To
inform all nodes, however, our protocol is shown to need Θ(log n) time.
This is mainly due to few nodes that require Ω(log n) time to contact or
be contacted by a neighbor for the first time.

These results show that the asynchronous push-pull protocol behaves
quite differently than the synchronized one, despite the fact that each
node still contacts one neighbor per time unit on average. The discrep-
ancy between informing all nodes and almost all nodes reflects an often
observed ‘long tail’ behavior in real world networks. Such effects are less
visible in the synchronized case [11].
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2 Precise Model and Preliminaries

Preferential attachment graphs were first introduced by Barabási and
Albert [1]. In this work, we follow the formal definition of Bollobás et al. [2,
4]. Let G be an undirected graph. We denote by degG(v) the degree of a
vertex v in G.

Definition 1 (Preferential attachment graph). Let m ≥ 2 be a fixed
parameter. The random graph Gnm is an undirected graph on the vertex
set V := {1, . . . , n} inductively defined as follows.

G1
m consists of a single vertex with m self-loops. For all n > 1, Gnm

is built from Gn−1m by adding the new node n together with m edges
e1n = {n, v1}, . . . , emn = {n, vm} inserted one after the other in this or-
der. Let Gnm,i−1 denote the graph right before the edge ein is added. Let
Mi =

∑
v∈V degGn

m,i−1
(v) be the sum of the degrees of all the nodes in

Gnm,i−1. The endpoint vi is selected randomly such that vi = u with proba-
bility degGn

m,i−1
(u)/(Mi + 1), except for n that is selected with probability

(degGn
m,i−1

(n) + 1)/(Mi + 1).

This definition implies that when ein is inserted, the vertex vi is chosen
with probability proportional to its degree (except for vi = n). Since
many real-world social networks are conjectured to evolve using similar
principles, the PA model can serve as a model for social networks. Another
property observed in many real-world networks has been formally proven
for preferential attachment graphs, namely that the degree distribution
follows a power-law [4].

For m = 1 the graph is disconnected with high probability; so we
focus on the case m ≥ 2. Under this assumption, Bollobás and Rior-
dan [2] showed that the diameter is only Θ(log(n)/ log log n) with high
probability.

With a slight abuse of notation we write (u, v) ∈ E or (v, u) ∈ E both
to denote {u, v} ∈ E. The definition of Gnm can lead to multiple edges
and self-loops, though they typically make up only a vanishing fraction
of the edges.

We examine the following broadcasting protocol.

Definition 2 (Asynchronous push-pull strategy). Each node has a
clock that ticks at the times of a rate 1 Poisson process. Whenever the
clock of a vertex u ticks, it chooses uniformly at random a neighbor v.
If u knows the rumor, it sends the rumor to v (“push”). If v knows the
rumor, it sends the rumor to u (“pull”).
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We say that an edge (u, v) fires, whenever the clock of node u ticks and
u contacts v. We call the time span between two ticks of a clock a round.
The length of a round is exponentially distributed with mean 1.Since the
exponential distribution is memoryless, the length of a round is indepen-
dent over time. The following elementary lemma shows that also the time
when a node contacts a specific neighbor is exponentially distributed.

Lemma 1. Let u be a node of degree d that is connected to a node v. Let
T denote the time span until u contacts v. Then, P[T > x] = e−x/d.

3 Statement of Results

Theorem 1. With probability 1− o(1), the asynchronous push-pull pro-
tocol broadcasts a rumor from any node of Gnm to (i) all but o(n) nodes
in time O(

√
log n), (ii) and to all nodes in time Θ(log n).

The proofs of the upper bounds in Theorem 1 consist of three main
steps. In Section 4.3, we analyze the time needed until the rumor reaches
a so-called useful node. Roughly speaking, a node is useful if its degree
is at least polylogarithmic (see Section 4.2 for details). We prove that a
useful node is reached in time O((log logn)2) with probability 1 − o(1)
and in time O(log n) with probability 1−o(n−2). The later bound is used
for the case when all nodes are to be informed.

The core of the proof (see Section 4.4) consists of showing that once
a useful node u has been informed, within O(

√
log n) time the rumor is

propagated to node 1. To this aim, we show that there is a short path
from u to 1 such that every second node has degree exactly m that is
traversed in time O(

√
log n). To prove such a fast traversal we exploit

edges that fire fast. In particular, we use the fact that the minimum of
k i.i.d. exponential random variables with mean 1 is also exponentially
distributed with mean 1/k.

The result then follows from the following symmetry property.

Lemma 2. Assume that if the rumor starts in node u, it reaches node v
in time t with probability p. This implies the reverse statement: if the
rumor is initiated by v, then it reaches u in time t with probability p.

4 Analysis of the Asynchronous Push-Pull Model

4.1 Alternative model

In the random process generating Gnm the random decisions made at each
step depend heavily on the previous random decisions. Bollobás and Ri-
ordan [2] therefore suggested an alternative way of generating Gnm that is
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more accessible. We first describe the model for m = 1 and then generalize
it to arbitrary m.

Let (xi, yi) for i ∈ [n] := {1, 2, . . . , n} be n independently and uni-
formly chosen pairs from [0, 1] × [0, 1]. With probability one, all these
numbers are distinct. By reordering each pair if necessary, we assume that
xi < yi for every i ∈ [n]. Suppose that after relabeling, y1 < y2 < · · · < yn.
We set W0 := 0 and Wi := yi for i ∈ [n]. The graph Gn1 is now de-
fined by having an edge (i, j) if and only if Wj−1 < xi < Wj . Define
wj := Wj −Wj−1.

Similarly, for Gnm, we sample mn pairs (xi,j , yi,j) independently and
uniformly from [0, 1] × [0, 1] with xi,j < yi,j for i ∈ [n] and j ∈ [m].
We relabel the variables such that yi,j is increasing in lexicographic or-
der: y1,1 < y1,2 < · · · < y1,m < y2,1 < · · · < yn,1 < · · · < yn,m. We
set W0 := 0 and Wi := yi,m for i ∈ [n]. The graph is now defined by
having an edge (i, j) for each k ∈ [m] such that Wj−1 < xi,k < Wj .
As before, define wj = Wj − Wj−1. We write `i,k for the node j such
that Wj−1 < xi,k < Wj . Note that given y1,1, . . . , yn,m, the random vari-
ables x1,1, . . . , xn,m are independent with xik being chosen uniformly from
[0, yi,k]. We instead assume that if y1,1, . . . , yn,m are given, then each xi,k
is chosen independently and uniformly from [0,Wi]. By this slight modi-
fication, we can work with the values of the Wi’s and ignore the values of
the yi,j ’s. This modification only increases the probability of a loop at i.
It is straightforward to check that each step of our proof remains valid if
the probability of a loop is not increased. Thus, the validity of our proof
is not affected.

We give a few properties of the alternative model, that are useful in
the analysis. Let s = 2a be the smallest power of 2 larger than log10 n, and
let 2b be the largest power of 2 smaller than 2n/3. Let It = [2t + 1, 2t+1].

Lemma 3 (Bollobás and Riordan [2]). Let m ≥ 2 be fixed. Using the
definitions above, each of the following five events holds with probability
1− o(1).

• E1 :=
{
|Wi −

√
i/n| ≤ 1

10

√
i/n for all i ∈ [s, n]}

• E2 :=
{
|{i ∈ It | wi ≥ 1/(10

√
in)}| ≥ 2t−1 for all t ∈ [a, b)}

• E3 := {w1 ≥ 4
log(n)

√
n
}

• E4 := {wi ≥ log2(n)/n for all i < n1/5}

• E5 := {wi < log2(n)/n for all i ≥ n/2}.
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Note that the event E5 is slightly adjusted for our purposes. In the original
paper, the authors show that for i ≥ n/ log5 n; we have wi < n−4/5. It is
easy to check that (essentially) the same proof holds for the above version.

Instead of working directly with the alternative model where the Wi’s
are random variables, we use the following typical social network model
where the Wi’s are fixed numbers that satisfy the properties E1, . . . , E5.
Since by Lemma 3, these properties hold with high probability, all re-
sults proven for a typical social network model carry over to Gnm with
high probability. Let 0 < W1 < · · · < Wn < 1 be distinct real numbers
and let wi = Wi −Wi−1. Assume that W1, . . . ,Wn satisfy the properties
E1, . . . , E5. A typical social network Gm(W1, . . . ,Wn) is obtained by con-
necting each node i with the nodes `i,1, . . . , `i,m, where each `i,k is a node
chosen randomly with P[`i,k = j] = wj/Wi for all j ≤ i.

We always assume to have a typical social network G :=
Gm(W1, . . . ,Wn).

4.2 Useful nodes

We use the notion of a useful node that was introduced by Bollobás and
Riordan [2]. A node i is useful if wi ≥ log2(n)/n. Note that we are slightly
relaxing the original definition in [2] where the authors also assumed
that i ≤ n/ log5(n). We have by E5 that i < n/2 for all useful nodes.
Furthermore by E4, every i < n1/5 is useful. The following properties of
non-useful nodes were proved in [11].

Lemma 4. With probability 1− o(1), the following event holds

• E6 := {degG(v) ≤ 5m log2 n for all non-useful v}.

Lemma 5. Assume that E6 holds. With prob. 1− n−1/5+o(1), we have

• E7 := {for all non-useful v, there exists at most one cycle whose nodes
are all connected to v via non-useful paths of length at most logn

(log logn)2
}.

Lemma 6 (Bollobás and Riordan [2]). Let v be a fixed non-useful
node. Then for all k ∈ [m], the prob. that `v,k is a useful node is at least
log−3 n. This event is independent from all other random decisions `v′,k′

with (v′, k′) 6= (v, k).

Note that in the original lemma, the authors only state a bound on the
probability that `v,1 is a useful node. However, the same proof yields the
above version. Also, Lemma 6 remains valid if we condition on E6.
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4.3 Informing the first useful node

Let G = Gm(W1, . . . ,Wn) be a typical social network. Assume that also
E6 and E7 hold. In this section, all probabilities are taken over the product
space of the random graph G and the random decisions of the rumor
spreading process.

Lemma 7. Let u be a fixed node. The rumor initiated by u reaches a
useful node in time O((log log n)2) with probability 1− o(1), and in time
O(log n) with probability 1− o(n−2).

4.4 Informing node 1

Similar to the synchronized case, we use constant degree nodes to establish
fast links between large degree nodes. More precisely, once a neighbor of
a constant degree node is informed, the time until it has pulled the rumor
from this neighbor and pushed it to one specific neighbor is (essentially)
exponentially distributed. Thus, independent of their own degrees, two
nodes that are connected via a third node of constant degree exchange
information in time exponentially distributed.

Starting from one informed useful node, we study how fast the rumor
spreads to the surrounding ‘neighborhoods’ of nodes. We consider neigh-
borhoods alternating between small nodes and good nodes i of relatively
large weight wi. The small nodes act as fast links between the levels of
good nodes that ensure a large expansion. In particular, we make use of
the fact that a good node i has a high degree and since every small neigh-
bor of i independently pulls the rumor in time exponentially distributed,
we can argue that a considerable fraction of the small neighbors of i will
be informed very fast. The more neighbors of informed nodes there are,
the faster the rumor will spread to sufficiently many neighbors that form
the next level of informed node. In contrast, in the synchronized case, it
would always take at least one time step for a neighbor to pull the rumor.

We consider informed neighborhoods at suitably chosen time steps on
the continuous time line. The smaller these steps are chosen, the smaller
the achieved expansion factor is at each step. On the other hand, smaller
time steps allow us to progress faster through the different neighborhood
levels. By carefully choosing each step size, we can balance out these
opposing effects in order to achieve the following runtime.

Theorem 2. Let W1, . . . ,Wn be such that E1, . . . , E5 are satisfied. Let
G be a random graph from Gm(W1, . . . ,Wn). Let v ∈ [n] be a useful node.
With probability 1− o(n−1), using the asynchronous push-pull protocol, a
rumor present at v reaches node 1 in O(

√
log n) steps.
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For our argument using fast links, we will need many nodes of constant
degree. The following simple lemma proves that there is a linear number
of nodes i ∈

[
2
3n, n

]
that have a degree equal to m. We call such nodes

small. If not explicitly stated, all probabilities in this section are taken
over the random graph Gm(W1, . . . ,Wn), where W1, . . . ,Wn are given
numbers that satisfy properties E1, . . . , E5.

Lemma 8. Let εm := 1
8e
−3m. With probability 1 − e−Ω(n), there are at

least εmn small nodes in
[
2
3n, n

]
.

Crucial for a large expansion in each step are good nodes of large weight.
We say a node i is good if

i ∈ [s+ 1, 2b] and wi ≥ 1/(10
√
in), (1)

where, as before, s = 2a is the smallest power of 2 larger than log10 n
and 2b is the largest power of 2 smaller than 2

3n. Let u be a useful node.
Let t0 < t′0 < t1 < t′1 < . . . denote discrete time steps to be specified
later. We consider neighborhoods of u that are informed in these time
intervals. In particular, we define sets Γk and Γ ′k recursively as follows.
We set Γ0 = {u}. Given the set Γk, Γ

′
k consists of all small nodes i ≥ 2

3n
that contact a neighbor in Γk in time [tk, t

′
k] and have not been included

in any Γ ′` with ` ≤ k − 1. Similarly, Γk is defined as the set of all good
nodes that are contacted by a neighbor in Γ ′k−1 in time [t′k−1, tk] and have
not been included in any Γ` with ` ≤ k − 1. Note that for all k ≥ 0, Γk
only contains nodes i < 2

3n, while Γ ′k only contains nodes i ≥ 2
3n. This is

true for Γ0 since u is useful and by E5, all useful nodes are smaller than
n/2. We define the weight of a set Γk by

fk :=

{
wu if k = 0∑

i∈Γk

1√
in

if k ≥ 1.
(2)

Since for k ≥ 1, Γk only contains good nodes, and by definition, wu = f0,
we have for k ≥ 0, ∑

i∈Γk

wi ≥ fk/10. (3)

We denote by Nk = Γ0 ∪ Γ1 ∪ · · · ∪ Γk (note that the Γ ′i are not in-
cluded). Let C0 ⊆

[
2
3n, n

]
be the set of small nodes and for k ≥ 1,

let Ck = C0 \ {Γ ′0, . . . , Γ ′k−1} be the set of small nodes excluding nodes
in Γ ′0, Γ

′
1, . . . , Γ

′
k−1. By Lemma 8, we have C0 ≥ εmn with probability

1− e−Ω(n).
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The next lemma shows that we achieve an exponential expansion in
terms of fk in each level as long as there is still a linear number of small
nodes in Ck and similarly, as long as for each interval It := [2t + 1, 2t+1],
where t ∈ [a, b), there are still 2t−2 good nodes that are not Nk.

Lemma 9. Let c > 0 be a sufficiently large constant, k ≥ 0 be such
that log4(n)/

√
n ≥ fk ≥ log2(n)/n and |Ck| ≥ εmn/2. Let ∆k =

c log
−1/2
2 (εmfkn/ log2 n). Set t′k := tk + ∆k and tk+1 := t′k + ∆k. Then

given Ck and Γ0, Γ
′
0, Γ1, Γ

′
1, . . . , Γk, with prob. 1 − O(n−6/5), one of the

following is satisfied. (i) |Nk+1 ∩ It| ≥ 2t−2, for some t ∈ [a, b), or (ii)
fk+1 ≥ 2fk.

5 Conclusion

We have shown that for PA graphs the asynchronous push-pull proto-
col informs almost all nodes in O(

√
log n) time. This shows, in an even

stronger way than the previous Θ̃(log n) bounds for the synchronized pro-
tocol [11], that randomized rumor spreading is very effective in network
topologies resembling real-world networks.

From a broader perspective, our result also indicates that in natu-
rally asynchronous settings, it might be a misleading oversimplification
to assume a synchronized protocol.
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