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Abstract—The problem of identifying rumors is of practical
importance especially in online social networks, since infor-
mation can diffuse more rapidly and widely than the offline
counterpart. In this paper, we identify characteristics of rumors
by examining the following three aspects of diffusion: temporal,
structural, and linguistic. For the temporal characteristics, we
propose a new periodic time series model that considers daily
and external shock cycles, where the model demonstrates that
rumor likely have fluctuations over time. We also identify key
structural and linguistic differences in the spread of rumors
and non-rumors. Our selected features classify rumors with
high precision and recall in the range of 87% to 92%, that is
higher than other states of the arts on rumor classification.

I. INTRODUCTION

Social psychology literature defines a rumor as a story
or a statement in general circulation without confirmation
or certainty to facts [1]. Rumors are known to arise in the
context of ambiguity, when the meaning of a situation is
not readily apparent or when people feel an acute need for
security [6]. Rumors hence are a powerful, pervasive, and
persistent force affecting people and groups [5].

The spread of rumors and misinformation has been stud-
ied in the context of quantifying the credibility of a given
piece of information [3] and in detecting an outbreak of
misinformation [10]. With the growing popularity of online
social networks and their information propagation potentials,
the ability to control the type of information that propagates
in the network has become ever more important.

Numerous definitions of a rumor exist. A piece of infor-
mation can be considered either verified or unverified, based
on the judgments made at the time of circulation. The latter,
a piece of information that cannot be verified as true or
false at the time of circulation (i.e., unverified), is commonly
considered as a rumor in social psychology fields. In this
paper, we rigorously divide the latter further into three types:
true, false, and unknown, based on the judgments made after
the time of circulation. The first type “true” represents when
a piece of information that was unverified during circulation
is officially confirmed as true after some time. This could be
interpreted as information leakage, marketing, or prediction
with enough reliable evidence. The other two types, “false”
and “unknown”, which later in time get confirmed as false or
remain unverified respectively, are what we define as rumors.

We propose a novel approach to identify rumors based
on temporal, structural, and linguistic properties of rumor
propagation. Our work is real data-driven. We utilize three
and a half years worth of near-complete data of Twitter and
extracted 104 viral events, each of which involves at least
60 posts. For the study, we employed four human coders to
have each of the viral events annotated.

Based on the annotated data and guided by the theoretical
studies on rumors, we analyzed the temporal, structural,
and linguistic properties of rumors and non-rumors. For the
temporal characteristic, we propose a new method called the
Periodic External Shocks (PES) model that can describe the
periodic bursts unique to rumors due to the daily cycle and
the external shock cycle. For the structural characteristic,
we extract properties related to the propagation process
such as the proportion of isolated rumor spreaders and the
proportion of propagation from low- to high-degree users.
For the linguistic characteristic, we examine the word-level
categories and sentiments particular to rumors such as the
use of negation and negative affect words.

We built three classifiers based on decision tree, random
forest, and SVM to determine whether a topic is a rumor
or a non-rumor given the set of tweets about the topic. Our
classifiers based on the temporal, structural, and linguistic
features provide high precision and recall in the range of
87% to 92%, that is higher than other states of the arts on
rumor classification.

This paper is one of the first to analyze the underlying
process of rumor propagation based on annotated dataset
drawn from a near-complete social media stream. While
most existing work focused on the structural and linguistic
features for related problems, we highlight that rumors
show bursty fluctuations over time and this temporal feature
has the highest predictive power. The newly proposed PES
model can effectively capture the bursty temporal pattern,
opening the door to new methods for identifying rumors, as
temporal features are often more easily accessible than oth-
ers (e.g., structural feature or linguistic feature). Our findings
on structural and linguistic patterns could also stimulate fur-
ther research on understanding the connection between these
features and rumor propagations. Fore the wider community
use, we share the annotated rumor and non-rumor datasets
at http://mia.kaist.ac.kr/publications/rumor.



II. RELATED WORK

A. Theories on rumor propagation.

The first insight we gain from existing research on ru-
mor propagation is about the temporal properties of rumor
spreading. Social psychologists theorized that rumormongers
have a short attention, because a rumor can flourish only
during a short time window when there is a need for informa-
tion in the absence of news from institutional channels [12].
As a result, allegations and interrogatory statements based
on circumstantial evidence often become rumors, as people
seek out information while the true facts are shrouded in
ambiguity [2].

The next insight is about the structural properties of
rumor spreading. A study on gossip, which is oriented
more towards ‘inner-circle’ content than rumors, reveals
that denser network structures are less vulnerable to social
fragmentation than sparser networks [7]. This study shows
that gossips spread more widely in sparse structures. One
study focused on the various roles rumormongers play, for
instance, a messenger (i.e., a person who brings pertinent
information to the group) and a skeptic (i.e., a person who
expresses doubt over authenticity of the information) [12].
Each of these roles are expected to affect the structure of a
rumor network.

The final insight is about the linguistic properties of rumor
spreading. A study based on laboratory interviews suggests
that rumors are expected to be dominated by certain types of
sentiments like anxiety, uncertainty, credulity, and outcome-
relevant involvement [11].

B. Rumors and other diffusions in OSNs.

Ratkiewicz et al. designed a system, called Truthy, to mine
and visualize astroturf political campaigns in Twitter [10].
Their work proposed several key structural features that can
efficiently identify astroturf memes, which then can be used
for terminating the associated accounts. While not directly
related to rumors, Matsubara et al. recently introduced the
time series fitting model to describe the temporal pattern of
a viral event with a diffusion mechanism and periodicity [8],
We extend their model to better describe the temporal
fluctuations of rumors and introduce a new model with
additional features (e.g., periodic external shocks).

The work most similar to ours is by Castillo et al. [3],
which proposed a set of features to assess the credibility of
social media content. The authors proposed a way to auto-
matically classify them. Their algorithm tries to judge the
credibility of information based on a wide range of features
related to the message, users, topics, and propagation pattern
within Twitter. In contrast, our proposed features are drawn
from extensive theories in social psychology and are almost
non-overlapping with the feature set of [3], hence providing
a complementary view to the problem.

III. DATA

We describe the Twitter dataset and the methodology used
for collecting and annotating rumor and non-rumor cases.

A. Collecting rumor and non-rumor cases.

We used the Twitter data reported in [4], which comprise
the profile information of 54 million users, the 1.9 billion
follow links between them, and all of the 1.7 billion public
tweets posted over the course of three and a half years since
the launch of Twitter in March 2006. The link information
is based on a snapshot of the network at August 2009.

To collect rumor and non-rumor cases, we investigated
websites like snopes.com, urbanlegends.about.com, pcmang.
com and times.com. We chose a total of 130 topics (70
rumors and 60 non-rumors) that circulated during the time
period covered by the Twitter dataset. For each topic, we de-
fined regular expression and extracted every relevant tweet,
based on regular expressions that were defined by consulting
these websites and 4 annotators agreement. We focused on
a period of 60 days starting from one day prior to a key
date, which corresponds to the date when the rumor was
first reported.

B. Annotation and agreement.

In order to ensure that all rumors and non-rumors are
valid, we asked the 4 participants to classify each topic
as either rumor or non-rumor after providing them four
randomly-chosen relevant tweets and a list of URLs on the
topic identified by the annotators. We then selected topics
that were evaluated by at least four participants and had
the majority agreement (three or four classified the same)
for this study. This process yield a total of 130 topics, out
of which 68 were rumors and 57 were non-rumors. The
intra-class correlation coefficient (ICC), which measures the
amount of agreement among participants, was 0.992 and the
p-value was zero. Table I lists examples of rumors and non-
rumors, respectively. The final 130 topics that are annotated
had varying sizes. In this study, we further limit to only
those topics that contain at least 60 tweets and as a result
retained 102 topics (47 rumors and 55 non-rumors).

IV. FEATURE INDENTIFICATION

Based on the theories of rumor propagation in the existing
literature, we investigate the three aspects of rumor propaga-
tion, namely temporal, structural, and linguistic properties.

A. Temporal properties

The first set of properties we investigate are temporal
properties in rumor spreading. Figure 1 shows several sam-
ple time series of rumors and non-rumors. A distinct feature
observed from these time series is that rumors tend to have
multiple and periodic spikes, whereas non-rumors typically
have a single prominent spike.



Table I: Representative rumor (Bigfoot) and non-rumor (Summize) cases and their tweet data summary

Topic Spreaders Tweets Description (Regular Expression)
(Audience) (Mentions) Example tweets

Bigfoot 462 1006 The dead body of bigfoot is found (bigfoot & (corpse — (dead body))
(1731926) (40) “Bigfoot Trackers Say They’ve Got a Body, I Say They Don’t”

Summize 2054 969 Twitter buy an IT company (twitter & buy & summize)
(4367672) (285) “Twitter buying summize is BRILLIANT. I bet it powers the home screen with all the updates.”

(a) Bigfoot (b) AdCall (c) Catfish (d) HIVKetchup (e) FanDeath (f) Dork

Rumor

(g) Havard (h) Summize (i) Rockfeller (j) District9 (k) BreastIceCream (l) ObamaFly

Non-Rumor

Figure 1: Examples of extracted time series, with x-axis as days and y-axis as the number of tweets on the topic.

Our model is an adaptation of the SpikeM time-series
fitting model that was proposed by Matsubara et al. [8]. The
SpikeM model extends the Susceptible-Infected (SI) model
in epidemiology to cover periodic spiky behavior and power-
law decays observed in many time series. The full SpikeM
model is given by the equations below.

SpikeM with parameters θ = {N, β, nb, Sb, ε, pp, pa, ps}:

U(n+ 1) = U(n)−∆B(n+ 1),

∆B(n+ 1) = p(n+ 1) · [ β
N
· U(n)·

n∑
t=nb

(∆B(t) + S(t)) · (n+ 1− t)−1.5 + ε] (1)

p(n) = 1− 1

2
pa

[
1 + sin

(
2π

pp
(n+ ps)

)]
,

S(t) = Sb when t = nb; otherwise 0.

U(0) = N,∆B(0) = 0.

In the model, U(n) is the number of uninfected (or
uninformed) nodes in the network at time step n; ∆B(n)
is the newly infected (or informed) nodes at time n; N is
the total number of nodes involved in the diffusion process;
nb is the time when the first external shock on the event
occurs, and Sb is the scale of this first external shock, i.e.,
the number of nodes that are infected at the beginning of
the event at time nb. Thus the term

∑n
t=nb

(∆B(t) + S(t))

represents the total number of infected nodes at time n. Then
∆B(n+ 1) = β

N · U(n) ·
∑n
t=nb

(∆B(t) + S(t)) would be
the standard SI model describing that at time n + 1 each
uninfected node u randomly picks one node v out of all the
nodes and if v is already infected, u becomes infected at
time n + 1 with probability β, the parameter for infective
strength.

The SpikeM model extends the SI model by introducing
(a) a power-law decay term (n + 1 − t)−1.5 in equation 1
so that the strength of infection of the earlier infected nodes
becomes weaker in a power-law decay pattern, and (b) a
periodic interaction function p(n) to reflect people’s periodic
interaction patterns (e.g. people may have more time to
interact on Twitter in the evening than during the day when
they are at work or school). Parameters pp, pa, and ps
correspond to the period, amplitude, and phase shift of the
periodic interaction function, respectively. Finally parameter
ε is a background noise term not interpretable by infection.

However, the SpikeM model is not appropriated for rumor
analysis, because conceptually there is no parameter in the
model that could explain the multiple spiky pattern of the
rumors versus the single-peak pattern of non-rumors as seen
in Figure 1. The periodic interaction function p(n) models
the cyclic interaction patterns of users caused by their daily
or weekly routines, yet it is not likely to be different between
rumors and non-rumors.

External shock may incur not once but multiple impacts
over time.. For simplicity, we assume that external shocks



have a short periodic cycle. Based on this assumption,
we extend the SpikeM model and introduce the Periodic
External Shocks (PES) model:

PES model with parameters θ′ = {N, β, nb, Sb, ε,
pp, pa, ps, qp, qa, qs}:

∆B(n+ 1) = p(n+ 1) · [ β
N
· U(n)·

n∑
t=nb

(∆B(t) + S̄(t)) · (n+ 1− t)−1.5 + ε], (2)

S̄(t) = S(t) + q(t),

q(t) = qa

[
1 +

(
sin

(
2π

qp
(t+ qs)

))]
,

All other terms are the same as in SpikeM.

In the PES model, we add periodic external shock function
q(t) to the initial shock function S(t), and q(t) has param-
eters qp, qa and qs representing the period, amplitude, and
the shift of the periodic external shock function, respectively.
When qa = 0, the PES model is reduced to SpikeM, hence
working as a generalization of the SpikeM model.

For parameter learning, we use Levenberg-Marquard
methods to minimize the sum of the squared errors:
D(X, θ) =

∑
n(X(n) − ∆B(n))2 with a given timseries

X(n). We will show in Section V that these new features
introduced by the PES model turn out to be the most
effective in classifying rumors. Table II displays the temporal
features in the PES model.

Table II: Temporal features

Symbols Definition
N Total population of available users
β Probability of infection
nb Starting time of breaking news
Sc Strength of external shock at birth (time nb)
ε Background noise
pa Strength of interaction periodicity
ps Interaction periodicity offset
qa Strength of external shock
qp Periodicity of external shock
qs External shock periodicity offset

B. Structural properties

We define the friendship network as the induced subgraph
of the original follower-followee graph induced by those
users who posted at least one related tweets and follow links
among them.

Diffusion is defined as follows a topic is diffused from
user A to user B, if and only if (1) B follows A on Twitter
and (2) B posted about a given topic by mentioning the
appropriate keywords only after A did so. In case a user has
multiple possible sources, we pick the user who posted about
the topic the latest as the source. Removing all the links over
which a diffusion did not occur from the friendship network,
then yields the diffusion network.

(a) Bigfoot (rumor) (b) Summize (non-rumor)

Figure 2: Diffusion network examples

Figure 2 depicts the diffusion networks of two topics:
Bigfoot and Summize. Nodes represent rumor spreaders,
and edges represent incidents of information diffusion. The
figure shows that Bigfoot (rumor) involved a larger fraction
of singletons than Summmize (non-rumor). We could find
similar trends in other rumor and non-rumor cases.

From a friendship network, we also extract the largest con-
nected component (LCC). We test the structural properties
based on three network structure: the friendship network, the
LCC of the friendship network, and the diffusion network.
Table III shows a total of 15 structural features.

Table III: Structural features.

Symbols Definition
Vg Number of Nodes in the friendship network
Eg Number of Links in the friendship network
Dg Density of the friendship network
Cg Clustering Coefficient of the friendship network
Ig Median in-degree of the friendship network
Og Median out-degree of the friendship network
Fl Fraction of nodes in the LCC
Vl Number of nodes in the LCC
El Number of links in the LCC
Dl Density of nodes in the LCC
Cl Clustering Coefficient in the LCC
Il Median in-degree in the LCC
Ol Median out-degree in the LCC
Sd Fraction of singletons in the diffusion network
Fd Fraction of diffusion from low- to high-degree nodes

C. Linguistic properties.

We utilize a sentiment tool called the Linguistic Inquiry
and Word Count (LIWC), which is a transparent text analysis
program that counts words in psychologically meaningful
categories [9]. Its dictionary includes around 4,500 words
and word stems and the program shows the proportion of
words that are related to a given sentiment in an input file.
The LIWC provides five major categories and a number of
subcategories in its psychological processes (e.g., social, af-
fective, cognitive, perceptual, and biological processes). Full
list available at http://www.liwc.net/descriptiontable1.php.
We tested whether any of the major or subcategories appear
dominantly in rumors and non-rumors.



Before applying the sentiment tool, we cleaned up the
tweet data by removing usernames, short URLs, as well as
emoticons that the tool could not parse. Because sentiment
tools require some minimum amount of text as input (e.g.,
50 words), we consolidated all the cleaned up tweets into a
single file per topic for analysis.

V. RUMOR CLASSIFICATION IN TWITTER

We consider the features on the rumor diffusion patterns
of over time (11 temporal features), the shape of the dif-
fusion network and the friendship network (15 structural
features), and the language used in the content (65 linguistic
linguistic features) to classify rumors in Twitter.

A. Feature selection

We used random forest and logistic model to quantify
which features are most informative. For the variable selec-
tion in random forest, we used 2-fold cross-validated pre-
diction with sequentially reduced number of predictors [15]
to find the best number of variables. By this strategy, we
selected 11 variables with the highest importance.Table IV
displays the set of all such significant features determined
from the t-test at 0.05-level (p<0.05).

Table IV: The top singificant features. In the“Type” column,
“N” and “R” mean the feature had higher value for non-
rumors and rumors, respectively. “RF” and “LR” columns
show features selected by random forest and logistic regres-
sion, respectively.

Symbol Definition Type RF LR
Temporal features
qp Periodicity of external shock N X X
qs External shock periodicity offset N X X
ps Interaction periodicity offset N X
Structural features
Cg Clustering of the friendship network R
Dl Density of the LCC R
Cl Clustering of the LCC R
Sd Fraction of isloated nodes R X
Fd Fraction of low-to-high diffusion R X
Linguistic features
posemo love, nice, sweet N X X
negate no, not never R X X
social mate, talk, they, child R X
cogmech cause, know, ought N X X
excl but, without, exclude R X X
insight think, know, consider R
tentat may be, perhaps, guess R X X
see view, saw, seen N X X
hear listen, hearing R

We make several observations. First, the periodicity of ex-
ternal shock (qp) had the highest predictive power among all
features. The mechanism behind short cycle of rumors may
have to do with the credibility of information. Solove [13]
said that reputation gives people a strong incentive to
conform to social norms and to avoid breaching people’s
trust. Because rumors spread without strong evidence, rumor
audience may simply neglect the message, incurring low

infection rate and often terminating the propagation process.
As a result, rumors may rely more on the birth of new seeds
(i.e., new root nodes), who are influenced by external sources
(i.e., external shock). The fact that this temporal pattern is
the most effective predictor for classifying rumors is novel.

Second, the structural features also had high predictive
power. Among them, the fraction of information flow from
low to high-degree nodes (i.e., diffusion from less influ-
ential to more influential people) was the most effective.
The fraction of singletons (i.e., users whose tweet were
not mentioned or retweeted by others) is also one of the
recommend classifier, indicating that most of the times the
followers neglect the message. These findings are in tune
with the attention seeking behavior of rumor initiators [14].

Third, the linguistic features indicated reaction of people
toward rumors. Rumors were significantly less likely to
contain positive affect words (i.e., ‘posemo’ in Table IV than
non-rumors (p-= 1.7e−5). Also, users are far more likely to
mention negating words (e.g., no, not, never) in sentence
and take a cognitive action (e.g., cause, know) to the rumor
related content (p = 3.2e−6). Also users are more likely to
take an inferring action (i.e., tentatative) for rumors. This can
be an indicator that many users try to examine credibility of
rumor when they faced it.

B. Classification Results

So far we have demonstrated that periodicity of the ex-
ternal shock is the most important feature for distinguishing
rumors by the two variable selection methods. This result
supports that the PES model and its application is a good
method to extract reliable features for rumor spreading.
In order to test whether the selected features are effective
classifiers, we adopted 15 features that were used in [3] as
described in Table V. We took these features as a baseline
feature set (B) for the classification task.

Table V: Features for determining credibility of information
described in [3], used as baseline.

Feature definition
Fraction of tweets containing a URL
Fraction of tweets containing negative sentiment
Fraction of tweets containing positive sentiment
Fraction of tweets containing a question mark
Fraction of tweets containing a mention
Fraction of tweets containing a smiley emoticon
Fraction of tweets containing the first person pronoun
Spreader’s average number of posts
Spreader’s average number of friends
Spreader’s average number of followers
Spreader’s average number of days since registration
Average sentiment score in tweets
Number of distinct short URLs in tweets
Maximum level of the diffusion tree
Fraction of tweets by the most prolific spreader

To compare the discriminative power of the newly pro-
posed features in this paper, we consider two different sets



Table VI: The average performance for each classification
method: B (baseline with 15 features from [3]), S1 (pro-
posed in this paper with 11 features), and C (combinaton of
baseline and our proposed method with 27 features)

Set Method Accuracy Precision Recall F1

B Decision Tree 0.669 0.821 0.717 0.685
Random Forest 0.747 0.771 0.813 0.762

SVM 0.811 0.891 0.753 0.788
S1 Decision Tree 0.791 0.854 0.772 0.780

Random Forest 0.900 0.935 0.892 0.893
SVM 0.875 0.934 0.838 0.859

C Decision Tree 0.821 0.853 0.843 0.822
Random Forest 0.897 0.923 0.883 0.878

SVM 0.873 0.908 0.873 0.867

of recommended features based on random forest (which
we call S1 and is composed of 11 significant features
as listed in Table V and logistic regression (which we
call S2, composed of 9 features). We also constructed a
combined set, C = B ∪ (S1 ∪ S2), with a total of 27
features. We compared the baseline (B) with one of our
features (S1) and the combined set (C), by adopting standard
three classification algorithms: decision tree, random forest,
and SVM.Random forest gave marginally better result than
logistic regression in the comparison of S1 and S2. Hence,
we use S1 as the representative classification method of
our features. For each feature set, we applied 1000 times
of 2-fold cross validation and calculated the average recall,
precision, and F1 measure.

Table VI displays the results. For each feature set, we
highlight the best performing classification method in bold
text. For instance, SVM gave the best result for baseline and
random forest gave the best result for our features. Overall,
the table clearly demonstrates that our features (S1) retain a
much higher value for every measure compared to baseline.
The difference between based on the F1 measure is 0.788
for baseline and 0.893 for our features. Furthermore, the
combined set (C) does not always give improvement and
sometimes even lead to overfitting, as indicated by the lower
value of the F1 measure of C (0.878) compared to that of
S1 (0.893). These results indicate that our original features
play an important role in rumor classification compared to
the best known features that have been studied before.

VI. CONCLUSION

We studied the rumor spreading pattern on Twitter and
tried to classify rumors from non-rumors. Here, three sets
of features are explored: temporal, structural and linguistic.
To extract temporal and structural feature sets, we addressed
new time series fitting model and network structure. Com-
bined with a set of linguistic features, our integrated feature
set shows a more accurate result of identifying rumors from
other type of information than baseline features.
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